

(EC151)MICROPROCESSORS AND INTERFACING

COURSE OBJECTIVES:

Students will be able to.

- 1. Outline the history of computing devices.
- 2. Describe the architecture of 8086 microprocessors.
- 3. Develop programs for microprocessor and microcontrollers
- 4. Compare microprocessors and microcontrollers
- 5. Understand 8051 microcontroller concepts, architecture and programming

COURSE OUTCOMES:

At the end of the course, students will develop ability to

- 1. Define the history of microprocessors
- 2. Describe the architectures of 8085 and 8086 microprocessors.
- 3. Draw timing diagram
- 4. Write programs using 8086 and 8051
- 5. Distinguish between the different modules of operation of microprocessors.
- 6. Interface peripherals to 8086 and 8051

7. Evaluate the appropriateness of a memory expansion interface based on the address reference with particular application.

8. Apply the above concepts to real world electrical and electronics problems and applications.

Content			
Unit - 1			
Chapter No. 1 - 8086	15.00 hrs		
Evaluation of Microprocessors, Over View of 8085 8086 Architecture: Functional			
Diagram, Register Organization, Addressing modes, Instructions, Functional			
schematic, Minimum and Maximum mode operations of 8086, 8086 Control			
signal interfacing, Timing Diagrams. Assembly Language Programming of 8086:			
Assembly Directives, Macro's, Simple Programs using Assembler,			

Implementation of FOR Loop, WHILE, REPEAT and IF-THENELSE Features	
Unit - 2	
Chapter No. 2 - I/O and Memory Interface	10.00 hrs
I/O and Memory Interface: 8086 System bus structure, Memory and I/O	
Interfacing with 8086, 8255 PPI, Various modes of operations and interface of	
I/O devices to 8086, A/D, D/A Converter Interfacing, need for DMA, 8057 DMA	
controller	

Unit – 3		
Chapter No. 3 - Interrupts	8.00 hrs	
Interrupts: Interrupts in 8086, Interrupt vector table, dedicated interrupts,		
Interfacing 8259 (Interrupt Priority Control). Communication Interface: Serial		
Communication Standards, USART Interfacing RS-232, IEEE-488.		
Unit - 4		
Chapter No. 4 - Introduction to Micro Controllers	8.00 hrs	
Introduction to Micro Controllers: Overview of 8051 Micro Controller,		
Architecture, I/O ports and Memory Organization, Addressing modes and		
Instruction set of 8051, Simple Programs using Stack Pointer, Assembly language		
programming of 8051		
Unit - 5		
Chapter No. 5 - Interrupts & Communication	9.00 hrs	
Interrupt Communication: Interrupts – Timer / Counter and Serial		
Communication, Programming Timer Interrupts, Programming External H/W		
interrupts, Programming the serial communication interrupts, Interrupt Priority in		
the 8051, Programming 8051 Timers, Counters and Programming		

Name of the Faculty :Dr.J.Tarun Kumar

	M.Sampath Reddy	Academic Year	: 2017-18
Course Number	:EC151	Course Name	:MPI
Program	: B.Tech	Branch	: EEE
Year/ Semester	: III/II	Section(s)	:A&B

Lesson Schedule

Lecture No Portion covered per hour	Planned Delivery Date
1. Evaluation of Microprocessors, Over View of 8085	04-12-2017
2. 8086 Architecture: Functional Diagram Execution and Bus Interface Unit	04-12-2017
3. Register Organization	09-12-2017
4. Addressing modes of 8086	11-12-2017
5. Types of Instructions,Data Transfer,Arethemetic and Logical Instructions	11-12-2017
6. 8086 Instructions: Branch instructions(Conditional and unconditional Branch)	16-12-2017
7. Minimum and Maximum mode operations of 8086	16-12-2017
8. Timing Diagrams	18-12-2017

17-18 9. Simple Assembly Language Programming of 8086	III B. Tech. II 3 18-12-2017
10. Assembler Directives	21-12-2017
11. Simple Programs using Assembler Directives	23-12-2017
12. Procedures and Types of procedures	23-12-2017
13. Recursive Procedures	25-12-2017
14. Recursive rocedure : Factorial of a number	25-12-2017
15. Macros, Differences Between Procedures and Macros	28-12-2017
Unit-II	
16. 8086 System bus structure	28-12-2017
17. Memory Interfacing with 8086	28-12-2017
18. Need For I/O Interfacing	30-12-2017
19. Programable Pheripheral interface 8255	30-12-2017
20. I/O Interfacing Analog to digital conversion	01-01-2018
21. Digital to analog conversion	01-01-2018
22. Stepper Motor Interface	04-01-2018
23. Need For DMA, Data transfer Techniques	06-01-2018
24. 8257 DMA controller	08-01-2018
25. Interfacing 8257 with 8086:simple program on DMA Data transfer	11-01-2018
Unit-III	Planned Delivery Date
26. What is interupt, Interrupt structure of 8086	15-01-2018
27. Interrupt Vector Table, Dedicated Interrupts of 8086	18-01-2018
28. Interrupt driven data transfer ,Need for 8259	20-01-2018
29. 8259 Programable interrupt controller	27-01-2018
30. ICWs and OCWs of 8259	29-01-2018
31. Programing 8259, Interfacing 8259 with 8086	29-01-2018
32. Serial communication standards,8251 USART	01-02-2018
33. Parellel communication standards,IEEE-488 bus	03-02-2018
Unit-IV	
34. Introduction to Micro Controllers	05-02-2018
35. Overview of 8051 Micro Controller	08-02-2018
36. I/O ports of 8051	10-02-2018

17-18	III B. Tech. II S
37. Memory Organization of 8051 Internal RAM and ROM organization	12-02-2018
38. Addressing Modes Of 8051	15-02-2018
39. 8051 Instruction set	17-02-2018
40. Stack Programing	19-02-2018
41. Assembly language programing involving branch and loop instructions	22-02-2018
Unit-V	
42. Programmable timers and counters	26-02-2018
43. producing delays using times/counters	01-03-2018
44. Interrupt structure of 8051	03-03-2018
45. Interrupt programming	03-03-2018
46. Serial communicaton in 8051	05-03-2018
47. serial communication programming	05-03-2018
48. Interfacing switches and LEds	08-03-2018
49. Keyboard interfacing	12-03-2018
50. Stepper motor Interfacing	17-03-2018
51. LCD Interfacing	19-03-2018

Monday	:	1 st & 2 nd hrs	Thursday	:	
Tuesday	:		Friday	:	
Wednesday	:		Saturday	:	1 st & 2 nd hrs

(EE110) POWER ELECTRONICS

Course objectives:

Student will be able to:

- 1. Study the characteristics of SCR, MOSFET & IGBT
- 2. Control AC to DC voltage using converters
- 3. Determine design parameters of Chopper circuits
- 4. Analyze AC-AC Converters for speed control of Machines
- 5. Apply PWM techniques for Inverters

Course outcomes:

Students will be able to:

- 1. Suggest appropriate switches for specific applications
- 2. Design protection circuits for SCR
- 3. Evaluate performance indices of converters
- 4. Operate ac-dc three phase converters
- 5. Design the chopper circuits
- 6. Perform step up/step down frequency operation using cyclo converters
- 7. Apply inverters for speed control of induction motors
- 8. Evaluate the harmonic analysis of Inverters

LESSON PLAN

Name of the Faculty: Ms.P.Soumya Course Number: EE110 Program: B.Tech Year/ Semester: III/II Academic Year: 2017-2018 Course Name : PE Branch : EEE (A)

SI.	Topic of Lecture	Schedule
No.		DD/MM/ YYYY
	UNIT-I	
1	Introduction to Power Electronics	05/12/17
2	Thyristor theory of operation	0612/17
3	Static VI Characteristics	07,08/12/17
4	Turn-On methods of SCR	11/12/17
5	Two transistors Analogy	12/12/17
6	Dynamic Characteristics of SCR	13,14/12/17
7	Turn on & Turn off times	15/12/17
8	UJT Firing Circuit	18/12/17
9	Series Connection of SCR's	19/12/17
10	Parallel Connection of SCR's	20/12/17
11	Snubber Circuit details	21/12/17
12	Specifications & Ratings of SCR	22/12/17
13	Ratings of BJT, IGBT	27/12/17

2017-	18	III B. Tech. II Sem
14	Numerical Problems	27/12/17
15	Line Commutation, forced commutation (A,B)	28/12/17
16	Forced Commutation (C, D, E)	29/12/17
17	BJT VI Characteristics	30/12/17
18	Power MOSFET Characteristics	31/01/17
19	Power IGBT, Characteristics	02/01/18
	UNIT-II	
20	Phase Control Techniques	03/01/18
21	Single Phase line Commutated Converters	04/01/18
22	Mid Point connection and Bridge Connection	05/01/18
23	Half Controlled Converter with R. Load	08/01/18
24	Half Controlled Converter with RL load	09/01/18
25	HFC With RLE Load	10/01/18
26	Derivation of Average Load, Voltage & Currents	11/01/18
27	Active & Reactive Power to converter with freewheeling diode	12/01/18
28	Equations Without freewheeling diode	16/01/18
29	Numerical problems	17/01/18
30	Fully controlled converter	18/01/18
31	Mid Point with R Load, Bridge with R Load	19/01/18
32	Bridge Converter with RL Load with-out FWD	22/01/18
33	Bridge Converter with RLE Load	23/01/18
	MID EXAM-I	<u>24 - 27/01/18</u>
34	Bridge Converter with freewheeling diode	29/01/18
35	Derivation of Average Load Voltage & Current	30/01/18
36	Line commutated inverters, Active & Reactive Power inputs with and	31/01/18
	without freewheeling diode	
37	Effect of source Inductance	01/02/18
38	Derivation of Load Voltage and current	02/02/18
39	Numerical Problems	05/02/18
40	3-phase line commutated converters	06/02/18
41	3-phase three pulse, six pulse converters	07/02/18
42	Mid Point & Bridge Connection	08/02/18
43	Average Load Voltage with R & RL Loads	09/02/18
44	Effect of source Inductance	12/02/18
45	Dual converter (Single Phase & Three Phase), Problems	14/02/18
	UNIT-III	
46	AC Voltage Controllers, 1-Phase (2 SCR's in Anti parallel)	15/02/18
47	AC Voltage controller with RL Load	16/02/18
48	Modes of Operation of TRIAC	19/02/18
49	TRIAC with R & RL loads	20/02/18
50	Derivation of rms load voltage, current and power factor wave forms	21/02/18
51	Firing circuit, Numerical problems	22/02/18
52	1-phase Mid-point cyclo converter with R, RL Loads	23/02/18
53	Bridge configuration of 1-phase cyclo converter (Principle of operations)	26/02/18

2017	-18	III B. Tech. II Sem
54	Step down wave forms	27/02/18
	UNIT-IV	
55	Chopper Time ratio control	28/02/18
56	Current limit control strategy	01/03/18
57	Step-down chopper, Derivation of load voltage	02/03/18
58	Currents with R, RL & RLE Loads	05/03/18
59	Step-up Chopper-load Voltage expression	06/03/18
60	Jones chopper, Oscillation chopper	07/03/18,08/03/18
61	Morgan's chopper wave forms	09/03/18
62	AC Chopper, Problems	12/03/18
	UNIT-V	
63	1-phase inverter, Basic series Inverter	13/03/18
64	Basic Parallel capacitor inverter, Bridge inverter	14/03/18
65	Simple forced commutation circuit for Bridge inverter	15/03/18
66	MC Murray Inverter	16/03/18
67	MC Murray Bedford Inverter	19/03/18
68	Voltage control techniques for inverter-PWM techniques	20/03/18
69	Numerical problems	21/03/18
	MID EXAM-II	<u>22 - 24/03/18</u>

Timings:

Monday	:	4 th hr	Thursday	:	5 th
Tuesday	:	1^{st}	Friday	:	3 rd
Wednesday	:	2^{nd}	Saturday	:	

R ENGINEERING COLLEGE Creativity | Entrepreneurship 1 (An Autonomous Institution)

(EE111)POWER SYSTEM OPERATION AND CONTROL

COURSE OBJECTIVES:

The students will be able to

- 1. Draw the characteristics of thermal generators.
- 2. Develop mathematical model of a speed governing system.
- 3. Explain the necessity of constant frequency.
- 4. Analyze load frequency control and economic dispatch control.
- 5. Elaborate various sources of reactive power.

COURSE OUTCOMES:

At the end of the course, student will have an ability to

- 1. Mention the role of the characteristics of thermal generators in economic dispatch problem.
- 2. Calculate optimal loading of thermal generators to meet the power demand.
- 3. Draw the block diagram model of a speed governing system.
- 4. Analyze IEEE type –I excitation system.
- 5. Assess the change in frequency of the system for different load changes.
- 6. Distinguish controlled and uncontrolled cases of a two area system.
- 7. Design a compensation scheme for a transmission line.
- 8. Justify the need of reactive power control.

Name of the Faculty	: M. Sai kumar	Academic Year : 2017-18
Course Number	: EE320	Course Name : PSOC
Program	: B. Tech	Branch : EEE
Year/ Semester: III/I	Ι	Section : A

S. No.	Торіс	Schedule Date
	UNIT-I:	
1	Objective of the course	04.12.2017
2	Characteristics of Thermal Generators	05,06.12.2017
3	Condition for Optimal Operation	08.12.2017
4	Problems on Economic Dispatch by neglecting losses	11-13.12.2017
5	Problems on Unit Limit Violation	15-16.12.2017
6	Condition for Optimal dispatch by considering Losses	18.12.2017
7	B-Coefficients formula Derivation	19.12.2017
8	Flow Chart & Algorithm	20.12.2017
9	Problems on ED Problem	22-23.12.2017
10	Characteristics of Hydel units	27.12.2017
11	Hydroelectric Power Plant models	29.12.2017
12	Scheduling problems	30.12.2017

2017-1		
13	Short term Hydrothermal scheduling	02.01.2018
14	Problems on Hydro thermal scheduling	03.01.2018
	UNIT-II:	
15	First order turbine model	05.01.2018
16	Block diagram representation of steam turbines	06.01.2018
17	Modeling of synchronous machine	08.01.2018
18	Swing equation & State space II order model	09.01.2018
19	Mathematical modeling of speed governing system	10.01.2018
20	Fundamental Characteristic, excitation systems	12,16,17,19.01.2018
21	IEEE Type-I model block diagram representation	20.01.2018
	UNIT –III:	
22	Necessity of constant frequency	22.01.2018
23	Control area concept	23.01.2018
	I- Mid Examination	24-27.1.2018
24	Single area control	29.01.2018
25	Block diagram representation of an isolated Power System	30.01.2018
26	Steady State response	31.01.2018
27	Dynamic response of Un-controlled case	2.02.2018
28	Problems on LFC	3.02.2018
29	LFC of two-area systems	5-6.02.2018
30	Block diagram of Two area system	7,9.02.2018
31	Uncontrolled case	12.02.2018
32	controlled case	14.02.2018
33	Tie-line bias control	16.02.2018
	UNIT –IV:	
34	PI Controller for single area	17,19.02.2018
35	Steady state response	20.02.2018
36	LFC and Economic dispatch control	21,23,24.02.2018
37	LFC of 2 area system	26-28.02.2018
	UNIT -V:	
38	Over view of reactive power control	02.03.2018
39	Compensation in transmission systems	03.03.2018
40	Sources of reactive power	05-06.03.2018
41	Advantages of different compensation equipment	09.03.2018
42	Disadvantages of various compensation equipment	12.03.2018

2017-18	3	Ι	II B. Tech. II Sem
43	Load Compensation	13.03.2018	
44	Specifications of Load compensator	14.03.2018	
45	Uncompensated Transmission Lines	16,17,19.03.2018	
46	Shunt Compensation	20.03.2018	
47	Series Compensation	21.03.2018	
48	Revision	27,28,31.03.2018, 2- 4.04.2018	
	II- Mid Examination		

Monday	:	11.20 - 12:10 pm	Thursday	:	
Tuesday	:	10.20 - 11:10 am	Friday	:	12:10 - 01:00 pm
Wednesday	:	09:30 - 10:20 am	Saturday	:	10:20 - 11:10 am

(An Autonomous Institution)

(EE112)SOLAR THERMAL PV SYSTEMS

COURSE OBJECTIVES:

The students will be able to

- 1. Explain the concepts of solar radiation.
- 2. Explain the measurement of solar radiation.
- 3. Discuss the PV power generation.
- 4. Explain the operation of solar cell and its simulation model.
- 5. Discuss the various types of solar radiation systems.

COURSE OUTCOMES:

At the end of the course, student will have an ability to

- 1.Sketch the solar radiation measuring instruments.
- 2. Evaluate the performance of PV system.
- 3. Construct the solar thermal radiation system.
- 4. Analyse the PV system based on F-chart.
- 5.Estimate the solar energy.

6. Analyse the life cycle analysis of solar system.

7. Economic analysis of solar energy conversion system.

8. Evaluate the carbon credit of solar energy system.

Name of the Facult	y: K.Dhanraj	Academic Year : 2017-18
Course Number	: EE112	Course Name : STPVS
Program	: B.Tech	Branch : EEE
Year/ Semester: III	/II	Section : A

S.No.	Торіс	Schedule Date				
	UNIT-I:					
1	Introduction	05.12.2017				
2	Nature of Solar Radiation	06.12.2017				
3	Global Radiation.	12.12.2017				
4	Beam Radiation.	12.12.2017				
5	Diffuse Radiation	12.12.2017				
6	Hourly, Daily and Seasonal variation of solar	13.12.2017				
0	Radiation.					
7	Estimation of Solar Radiation	16,19.12.2017				
8	Measurement of Solar Radiation	20.12.2017				
	UNIT-II:					
9	Types of solar collectors	23,27.12.2017				
10	Thermal Analysis of Solar Collectors.	30.12.2017				
11	Solar Water Heating Systems (Active and Passive)	2.1.2018				
12	Solar Space Heating and Cooling Systems	3.1.2017				
13	Solar Industrial Process Heating Systems	06.01.2018				
14	Solar Dryers and Desalination Systems	09.01.2018				
15	Solar Thermal Power Systems	10.01.2018				

		III D. TCCI
	UNIT –III:	
16	Solar cells and panels, performance of solar cell	16.01.2018
17	Estimation of power obtain from solar power	17.01.2018
18	Solar panels PV systems	20.01.2018
19	Components of PV systems, performance of PV	23.01.2018
19	systems	
	I-mid examination	24-27.01.2018
20	Applications of PV systems	03.02.2018
21	Concentrating PV systems	06.02.2018
22	PV power plants	07.02.2018
23	Power plant with fuel cells.	14.02.2018
	UNIT –IV:	
24	Design and Modelling of Solar Energy	17.022018
24	Systems: introduction	
25	F Chart method Systems.	20.022018
	Design and Modelling of Solar Energy Systems: φ–	21.02.2018
26	F Chart method	
27	Utilizability of Solar Energy Systems.	24.02.2018
28	Modelling of Solar Energy Systems.	27.02.2018
29	Simulation of Solar Energy Systems.	28.02.2018
	UNIT –V:	
30	Economic Analysis of Solar Energy Systems:	03.03.2018
30	Introduction	
31	Economic Analysis of Solar Energy Systems: Life	06.03.2018
51	cycle analysis of Solar Energy Systems.	00.03.2018
32	Economic Analysis of Solar Energy Systems: Time	07,13.032018
52	Value of Money.	
	Economic Analysis of Solar Energy Systems:	14,17.03.2018
33	Evaluation of Carbon Credit of Solar Energy	
	Systems.	
34	Revision	20.21.03.2018
	II-mid examination	22-24.03.2018

Monday	:		Thursday	:	
Tuesday	:	11.20 - 12:10 pm	Friday	:	
Wednesday	:	11.20 - 12:10 pm	Saturday	:	12:10 - 1:00 pm

(An Autonomous Institution)

(EC152) MICROPROCESSORS AND INTERFACING LAB

Year	Semester	Ho	Hours / Week C Marks					
Iear	Semester	L	Т	P/D	P/D C	CIE	SEE	Total
III	П	-	-	3	2	30	70	100

COURSE OBJECTIVES

Students will be able to

- 1. List the features of 8086 microprocessor and 8051 microcontroller
- 2. Describe accessing of data using different addressing modes
- 3. Develop assembly level programs for microprocessor and microcontroller
- 4. Analyze interfacing of peripheral devices with 8086
- 5. Test operation of timers/counter, serial/parallel ports, interrupts using 8051

COURSE OUTCOMES

At the end of the course, the student will develop ability to

- 1. Write assembly level programs on arithmetic operations using various addressing modes
- 2. Familiarize with the assembly level programming on strings.
- 3. Apply the concepts of assembly level programming on sorting and code conversions.
- 4. Design interfacing of various I/O devices to microprocessor
- 5. Design assembly language programs on 8051 microcontroller.
- 6. Apply the concept of serial communication of transmission of serial data.
- 7. Verify the ports, timer, and interrupts operation in 8051 microcontroller
- 8. Design and implement microcontroller-based embedded system

LESSON PLAN

Name of the Faculty: K.Naveen / Jaspreet kukreja/ Ishita deb/ ch.Harish

		Academic Year: 2017-18
Course Number	: EC152	Course Name : MPI LAB
Program	: B.Tech	Branch: EEE
	:	
Year/ Semester	III/II	Section: A

S No		Schedule Dates
	I.MICROPROCESSOR 8086	
1	Introduction to microprocessor 8086	8/12/2017
2	Demo on 8086 hardware kit	15/12/2017
3	Arithmetic operation In various addressing	22/12/2017
	modes-Multi byte Addition and Substraction,	
	Multiplication and Division – Signed and	
	unsigned Arithmetic operation, ASCII –	
	arithmetic operation	

2017-1	8	
4	Logic operations – Shift and rotate –	29/12/2017
	Converting packed BCD to unpacked BCD,	
	BCD to ASCII conversion	
5	Length of a string, Move block, Reverse	05/01/2018
	string,String	
	comparision,Inserting,Deleting,Sorting	
6	Average of numbers, Factorial, LCM, GCD,	12/01/2018
	Sum of squares, Sum of cubes	
	II.INTERFACING	
1	8255 – PPI: Generation of wave forms Square,	19/01/2018
	Rectangle, Ramp, Step wave, Triangular	
	Internal lab exam -1	02/02/2018
2	Stepper motor in clockwise and anticlockwise	09/02/2018
	direction	
	III.MICROCONTROLLER 8051	
1	Arithmetic operations in various addressing	16/02/2018
	modes	
2	Timers in different modes	23/02/2018
3	Serial communication implementation	02/03/2018
4	Revision	09/03/2018
5	Internal lab exam-2	16/03/2018

Timings:

Monday	:	Thursday	:	
Tuesday	:	Friday	:	1.40pm-4.00pm
Wednesday	:	Saturday	:	

(EE117) INDUCTION MOTORS AND SYNCHRONOUS MACHINES LAB

	_			ırs / Week		Marks		
Year	Semester	L	Т	P/D	С	CIE	SEE	Total
III	II	-	-	3	2	30	70	100

COURSE OBJECTIVES:

Students will be able to

- 1. Identify various parts of an induction motor
- 2. Explain starting methods of an induction motor
- 3. Develop circle diagram of an induction motor to determine the performance
- 4. Calculate the regulation of an alternator
- 5. Estimate Xd and Xq of a salient pole synchronous machine

COURSE OUTCOMES:

At the end of the course, students will develop ability to

- 1. Draw the equivalent circuit of a single phase induction motor
- 2. Explain testing of an induction motor
- 3. Execute brake test on three phase induction motor
- 4. Analyze No-load and blocked rotor tests of a three phase Induction motor
- 5. Evaluate regulation of a three --phase alternator
- 6. Construct V and inverted V curves of a three-phase synchronous motor
- 7. Predict efficiency of a three-phase alternator
- 8. Select the optimistic method to find the regulation of an alternator

Wednesday

:

			LESS	<u>ON PLAN</u>				
Name of	the Fa	cult	y:K.Balakrishna		Aca	demi	ic Year	: 2017-18
Course N	lumber	r	: EE117		Cou	irse N	Name	: IMSM LAB
Program			: B.Tech		Bra	nch		: EEE
Year/ Sei	nester		: III/II		Sect	tion		: A
S.No.			List of Experiments]	Batch-1	Batch-2
1	Introduction lab						4-12-2017	05-12-2017
2	Brake	e tes	t on three phase Induction	Motor		11	1-12-2017	12-1-2017
3			and Blocked rotor tests on a motor	three phase		18	8-12-2017	19-12-2017
4	I.M (Drav	equivalent circuit diagram w the circle diagram and ol performance parameters)		2	08	3-01-2018	02-01-2018
5	Equiv moto		nt Circuit of a single phase	induction		16	5-01-2018	09-01-2018
6	First	Lał	o Internal Exam			22	2-01-2018	23-01-2018
7	Load	test	on single phase induction		29-01-2018		30-01-2018	
8	-		on of a three –phase alterna	•		05-02-2018		06-02-2018
9			verted V curves of a three- ous motor	-phase		12-02-2018		20-02-2018
10			ation of Xd and Xq of a sa ous machine	lient pole		19-02-2018		27-02-2018
11			on of three-phase alternator ethods	by Z.P.F. ar	nd	26-02-2018		06-03-2018
12	Effici	ienc	y of a three-phase alternate	or		05	5-03-2018	13-03-2018
13	perfo	rma rel c	n experimental setup to obt nce parameters of a 3 phas age induction motor (Ope ent)		12	2-03-2018	12-03-2018	
14	14 Second Lab Internal Exam						9-03-2018	20-03-2018
Time Tab	le:				I			
Mond	ay	:	$5^{\mathrm{th}}-7^{\mathrm{th}}$	Thursday	/	:		
Tuesd	ay	:	$5^{ m th}$ $-7^{ m th}$	Friday		:		

Saturday

:

(EE118) POWER ELECTRONICS AND SIMULATION LABORATORY

COURSE OBJECTIVES:

Students will be able to

- 1. Identify the switches with their specifications and ratings.
- 2. Select appropriate firing circuits for the converters.
- 3. Classify different commutation circuits.
- 4. Write the simulation program power electronics circuits.
- 5. Apply different converters for different applications.

COURSE OUTCOMES:

At the end of the course, students will develop ability to

- 1. Recognize the appropriate switch for the selective application.
- 2. Use different firing circuits for different converters.
- 3. Sketch voltage and current waveforms for various loads.
- 4. Demonstrate and compute the readings of the various controller circuits.
- 5. Differentiate series and parallel inverter operations.
- 6. Categorize the quadrant operations.
- 7. Simulate and estimate the converter circuits.
- 8. Justify the appropriate converter for drive applications.

LESSON PLAN

.....

Name of the Faculty : B.Sathyavani/k.Dhanraj/E.Thirupathi

		Academic Year: 2017-18
Course Number	: EE118	Course Name : PE&S Lab
Program	: B.Tech.	Branch : EEE
Year/ Semester: Il	II / II	Section : A

S. No.	Торіс	Schedule Date	Schedule Date
1	Study of Characteristics of SCR, MOSFET	04.12.17	05.12.17
2	Gate firing circuits for SCR's	11.12.17	12.12.17
3	Single Phase AC Voltage Controller with R and RL Loads	18.12.17	19.12.17
4	Single Phase fully controlled bridge converter with R and RL loads	08.01.18	02.01.18
5	DC Jones chopper with R and RL Loads	22.01.18	09.01.18
6	Single Phase Series and Parallel inverter with R load	29.01.18	16.01.18
7	Single Phase Cyclo-converter with R and RL loads	05.02.18	23.01.18
8	Three Phase half controlled bridge converter with R-load	12.02.18	30.01.18
9	Single Phase dual converter with RL loads	19.02.18	06.02.18
10	PSPICE simulation of single phase inverter with PWM control	26.02.18	20.02.18
11	Revision	05.03.18	27.02.18

2	017-18			III B. Tech. II Sem
	12	Revision	12.03.18	13.03.18
	13	Internal Lab Exam	19.03.18	20.03.18

Monday	:	III EEE-A	Thursday	:	
Tuesday	:	III EEE-A	Friday	:	
Wednesday	:		Saturday	:	

(EE110) POWER ELECTRONICS

Course objectives:

Student will be able to:

- 1. Study the characteristics of SCR,MOSFET & IGBT
- 2. Control AC to DC voltage using converters
- 3. Determine design parameters of Chopper circuits
- 4. Analyze AC-AC Converters for speed control of Machines
- 5. Apply PWM techniques for Inverters

Course outcomes:

Students will be able to:

- 1. Suggest appropriate switches for specific applications
- 2. Design protection circuits for SCR
- 3. Evaluate performance indices of converters
- 4. Operate ac-dc three phase converters
- 5. Design the chopper circuits
- 6. Perform step up/step down frequency operation using cyclo converters
- 7. Apply inverters for speed control of induction motors
- 8. Evaluate the harmonic analysis of Inverters.

Course Prograr	Number : EE110 Cour	demic Year : 2017-2018 rse Name : PE nch : EEE (B)
Sl. No.	Topic of Lecture	Schedule DD/MM/ YYYY
	UNIT-I	
1	Introduction to Power Electronics	05/12/17
2	Thyristor theory of operation	0612/17
3	Static VI Characteristics	07,08/12/17
4	Turn-On methods of SCR	11/12/17
5	Two transistors Analogy	12/12/17
6	Dynamic Characteristics of SCR	13,14/12/17
7	Turn on & Turn off times	15/12/17
8	UJT Firing Circuit	18/12/17
9	Series Connection of SCR's	19/12/17
10	Parallel Connection of SCR's	20/12/17
11	Snubber Circuit details	21/12/17
12	Specifications & Ratings of SCR	22/12/17
13	Ratings of BJT, IGBT	27/12/17
14	Numerical Problems	27/12/17
15	Line Commutation, forced commutation (A,B)	28/12/17
16	Forced Commutation (C, D, E)	29/12/17
17	BJT VI Characteristics	30/12/17
18	Power MOSFET Characteristics	31/01/17
19	Power IGBT, Characteristics	02/01/18
	UNIT-II	
20	Phase Control Techniques	03/01/18
21	Single Phase line Commutated Converters	04/01/18
22	Mid Point connection and Bridge Connection	05/01/18
23	Half Controlled Converter with R. Load	08/01/18
24	Half Controlled Converter with RL load	09/01/18
25	HFC With RLE Load	10/01/18
26	Derivation of Average Load, Voltage & Current	
27	Active & Reactive Power to converter freewheeling diode	
28	Equations Without freewheeling diode	16/01/18
29	Numerical problems	17/01/18
30	Fully controlled converter	18/01/18
31	Mid Point with R Load, Bridge with R Load	19/01/18
32	Bridge Converter with RL Load with-out FWD	22/01/18
33	Bridge Converter with RLE Load	23/01/18
	MID EXAM-I	24 - 27/01/18
34	Bridge Converter with freewheeling diode	29/01/18
35	Derivation of Average Load Voltage & Current	
36	Line commutated inverters, Active & Read Power inputs with and without freewheeling did	ctive 31/01/18

017-18 37	Effect of source Inductance	III B. 01/02/18
38	Derivation of Load Voltage and current	02/02/18
39	Numerical Problems	05/02/18
40	3-phase line commutated converters	06/02/18
41	3-phase three pulse, six pulse converters	07/02/18
42	Mid Point & Bridge Connection	08/02/18
43	Average Load Voltage with R & RL Loads	09/02/18
44	Effect of source Inductance	12/02/18
45	Dual converter (Single Phase & Three Phase), Problems	14/02/18
	UNIT-III	
46	AC Voltage Controllers, 1-Phase (2 SCR's in Anti parallel)	15/02/18
47	AC Voltage controller with RL Load	16/02/18
48	Modes of Operation of TRIAC	19/02/18
49	TRIAC with R & RL loads	20/02/18
	Derivation of rms load voltage, current and power	21/02/18
50	factor wave forms	21/02/10
51	Firing circuit, Numerical problems	22/02/18
	1-phase Mid-point cyclo converter with R, RL	23/02/18
52	Loads	
53	Bridge configuration of 1-phase cyclo converter	26/02/18
	(Principle of operations)	
54	Step down wave forms	27/02/18
	UNIT-IV	
55	Chopper Time ratio control	28/02/18
56	Current limit control strategy	01/03/18
57	Step-down chopper, Derivation of load voltage	02/03/18
58	Currents with R, RL & RLE Loads	05/03/18
59	Step-up Chopper-load Voltage expression	06/03/18
60	Jones chopper, Oscillation chopper	07/03/18,08/03/18
61	Morgan's chopper wave forms	09/03/18
62	AC Chopper, Problems	12/03/18
	UNIT-V	
63	1-phase inverter, Basic series Inverter	13/03/18
64	Basic Parallel capacitor inverter, Bridge inverter	14/03/18
	Simple forced commutation circuit for Bridge	15/03/18
65	inverter	
66	MC Murray Inverter	16/03/18
67	MC Murray Bedford Inverter	19/03/18
68	Voltage control techniques for inverter-PWM techniques	20/03/18
69	Numerical problems	21/03/18
07	Trumenear problems	21/03/10

Timings:

2017-18

III B. Tech. II Sem

Monday	:	5 th hr	Thursday	:	5 th
Tuesday	:	1^{st}	Friday	:	4th
Wednesday	:	2^{nd}	Saturday	:	

(An Autonomous Institution)

(EE111)POWER SYSTEM OPERATION AND CONTROL

COURSE OBJECTIVES:

The students will be able to

- 6. Draw the characteristics of thermal generators.
- 7. Develop mathematical model of a speed governing system.
- 8. Explain the necessity of constant frequency.
- 9. Analyze load frequency control and economic dispatch control.
- 10. Elaborate various sources of reactive power.

COURSE OUTCOMES:

At the end of the course, student will have an ability to

- 9. Mention the role of the characteristics of thermal generators in economic dispatch problem.
- 10. Calculate optimal loading of thermal generators to meet the power demand.
- 11. Draw the block diagram model of a speed governing system.
- 12. Analyze IEEE type –I excitation system.
- 13. Assess the change in frequency of the system for different load changes.
- 14. Distinguish controlled and uncontrolled cases of a two area system.
- 15. Design a compensation scheme for a transmission line.
- 16. Justify the need of reactive power control.

Name of the Faculty	: K.Rajeshwar reddy	Academic Year : 2017-1		
Course Number	: EE320	Course Name	: PSOC	
Program	: B. Tech	Branch	: EEE	
Year/ Semester: III/II	[Section : B		

S. No.	Торіс	Schedule Date
	UNIT-I:	
1	Objective of the course	04.12.2017
2	Characteristics of Thermal Generators	06-07.12.2017
3	Condition for Optimal Operation	08.12.2017
4	Problems on Economic Dispatch by neglecting losses	11-13.12.2017
5	Problems on Unit Limit Violation	14-15.12.2017
6	Condition for Optimal dispatch by considering Losses	16.12.2017
7	B-Coefficients formula Derivation	18.12.2017
8	Flow Chart & Algorithm	20.12.2017
9	Problems on ED Problem	21-22.12.2017

2017-18		I
10	Characteristics of Hydel units	23.12.2017
11	Hydroelectric Power Plant models	27-28.12.2017
12	Scheduling problems	29-30.12.2017
13	Short term Hydrothermal scheduling	30.12.2017
14	Problems on Hydro thermal scheduling	03.01.2018
	UNIT-II:	
15	First order turbine model	04.01.2018
16	Block diagram representation of steam turbines	05.01.2018
17	Modeling of synchronous machine	06.01.2018
18	Swing equation & State space II order model	08.01.2018
19	Mathematical modeling of speed governing system	10.01.2018
20	Fundamental Characteristic, excitation systems	11,12,17,18.01.2018
21	IEEE Type-I model block diagram representation	19.01.2018
	UNIT –III:	
22	Necessity of constant frequency	20.01.2018
23	Control area concept	22.01.2018
	I- Mid Examination	24-27.1.2018
24	Single area control	29.01.2018
25	Block diagram representation of an isolated Power System	31.01.2018
26	Steady State response	1.02.2018
27	Dynamic response of Un-controlled case	2.02.2018
28	Problems on LFC	3.02.2018
29	LFC of two-area systems	5,7.02.2018
30	Block diagram of Two area system	8,9.02.2018
31	Uncontrolled case	12.02.2018
32	controlled case	14.02.2018
33	Tie-line bias control	15.02.2018
	UNIT –IV:	
34	PI Controller for single area	16,17.02.2018
35	Steady state response	19.02.2018
36	LFC and Economic dispatch control	21,22,23.02.2018
37	LFC of 2 area system	24,26,28.02.2018
	UNIT –V:	
38	Over view of reactive power control	02.03.2018
39	Compensation in transmission systems	03.03.2018
40	Sources of reactive power	05,07.03.2018

2017-18			III B. Tech. II Sem
41	Advantages of different compensation	08.03.2018	
41	equipment		
42	Disadvantages of various compensation	09.03.2018	
42	equipment		
43	Load Compensation	12.03.2018	
44	Specifications of Load compensator	14.03.2018	
45	Uncompensated Transmission Lines	15,16,17.03.2018	
46	Shunt Compensation	19.03.2018	
47	Series Compensation	21.03.2018	
48	Revision	28,29,31.03.2018,	
-10	Revision .	2,4.04.2018	_
	II- Mid Examination		

Monday	:	12:10 - 1:00 pm	Thursday	:	1.40 - 2:30 pm
Tuesday	:		Friday	:	11:20 - 12:10 pm
Wednesday	:	09:30 - 10:20 am	Saturday	:	11:20 - 12:10 pm

(An Autonomous Institution)

(EC152) MICROPROCESSORS AND INTERFACING LAB

Year	Semester	Ho	ours / W	'eek	C			
Iear	Semester	L	Т	P/D	C	CIE	SEE	Total
III	П	-	-	3	2	30	70	100

COURSE OBJECTIVES

Students will be able to

- 6. List the features of 8086 microprocessor and 8051 microcontroller
- 7. Describe accessing of data using different addressing modes
- 8. Develop assembly level programs for microprocessor and microcontroller
- 9. Analyze interfacing of peripheral devices with 8086
- 10. Test operation of timers/counter, serial/parallel ports, interrupts using 8051

COURSE OUTCOMES

At the end of the course, the student will develop ability to

- 9. Write assembly level programs on arithmetic operations using various addressing modes
- 10. Familiarize with the assembly level programming on strings.
- 11. Apply the concepts of assembly level programming on sorting and code conversions.
- 12. Design interfacing of various I/O devices to microprocessor
- 13. Design assembly language programs on 8051 microcontroller.
- 14. Apply the concept of serial communication of transmission of serial data.
- 15. Verify the ports, timer, and interrupts operation in 8051 microcontroller
- 16. Design and implement microcontroller-based embedded system

LESSON PLAN

Name of the Faculty: Ishita Deb / Jaspreet kukreja / Ch.Harish

		Academic Year: 2017-18
Course Number	: EC152	Course Name : MPI LAB
Program	: B.Tech	Branch: EEE
	:	
Year/ Semester	III/II	Section: B

S No		Schedule Dates
	I.MICROPROCESSOR 8086	
1	Introduction to microprocessor 8086	5/12/2017
2	Demo on 8086 hardware kit	12/12/2017
3	Arithmetic operation In various addressing	19/12/2017
	modes-Multi byte Addition and Substraction,	
	Multiplication and Division – Signed and	
	unsigned Arithmetic operation, ASCII –	
	arithmetic operation	

2017-1	8	
4	Logic operations – Shift and rotate –	02/01/2018
	Converting packed BCD to unpacked BCD,	
	BCD to ASCII conversion	
5	Length of a string, Move block, Reverse	09/01/2018
	string,String	
	comparision,Inserting,Deleting,Sorting	
6	Average of numbers, Factorial, LCM, GCD,	16/01/2018
	Sum of squares, Sum of cubes	
	II.INTERFACING	
1	8255 – PPI: Generation of wave forms Square,	23/01/2018
	Rectangle, Ramp, Step wave, Triangular	
	Internal lab exam -1	30/01/2018
2	Stepper motor in clockwise and anticlockwise	06/02/2018
	direction	
	III.MICROCONTROLLER 8051	l
1	Arithmetic operations in various addressing	20/02/2018
	modes	
2	Timers in different modes	27/02/2018
3	Serial communication implementation	06/03/2018
4	Revision	13/03/2018
5	Internal lab exam-2	20/03/2018

Timings:

Monday	:		Thursday	:	
Tuesday	:	10.20 am-1.00 pm	Friday	:	
Wednesday	:		Saturday	:	

(An Autonomous Institution)

(EE117) INDUCTION MOTORS AND SYNCHRONOUS MACHINES LAB

	~	Ho	urs / W	eek	~		Marks		
Year	Semester	L	Т	P/D	C	CIE	SEE	Total	
III	II	-	-	3	2	30	70	100	

COURSE OBJECTIVES:

Students will be able to

- 1. Identify various parts of an induction motor
- 2. Explain starting methods of an induction motor
- 3. Develop circle diagram of an induction motor to determine the performance
- 4. Calculate the regulation of an alternator
- 5. Estimate Xd and Xq of a salient pole synchronous machine

COURSE OUTCOMES:

At the end of the course, students will develop ability to

- 1. Draw the equivalent circuit of a single phase induction motor
- 2. Explain testing of an induction motor
- 3. Execute brake test on three phase induction motor
- 4. Analyze No-load and blocked rotor tests of a three phase Induction motor
- 5. Evaluate regulation of a three -phase alternator
- 6. Construct V and inverted V curves of a three—phase synchronous motor
- 7. Predict efficiency of a three-phase alternator
- 8. Select the optimistic method to find the regulation of an alternator

Name of the Faculty	Dr.R.Arulmurugan	Academic Year	: 2017-18
Course Number	:EE117	Course Name	:IMSMLAB
Program	: B.Tech	Branch	: EEE
Year/ Semester	: III/II	Section	: B

S.No.	List of Experiments	Batch-1	Batch-2
1	Introduction lab	08.12.17	09.12.17
2	Brake test on three phase Induction Motor	15.12.17	16.12.17
3	No-load and Blocked rotor tests on three phase Induction motor	22.12. 17	23.12.17
4	Draw the equivalent circuit diagram of a 3- phase I.M (Draw the circle diagram and obtain the machine performance parameters)	29.12. 17	30.12.17
5	Equivalent Circuit of a single phase induction motor	05.01.18	06.01.18
	Load test on single phase induction motor	12.01.18	06.01.18
6	First Lab Internal Exam	19.01.18	20.01.18
8	Regulation of a three –phase alternator by synchronous impedance and MMF methods	02.02.18	03.02.18
9	V and Inverted V curves of a three—phase synchronous motor	09.02.18	03.02.18
10	Determination of Xd and Xq of a salient pole synchronous machine	16.02.18	18.02.18
11	Regulation of three-phase alternator by Z.P.F. and A.S.A methods	23.02.18	24.02.18
12	Efficiency of a three-phase alternator	02.03.18	03.03.18
13 Design an experimental setup to obtain performance parameters of a 3 phase, 5 Hp squirrel cage induction motor (Open End Experiment)		09.03.18	03.03.18
14	Second Lab Internal Exam	16.03.18	17.03.18
Time Tal	ble:	· · · · · · · · · · · · · · · · · · ·	·

Monday	:	Thursday	:	
Tuesday	:	Friday	:	IIIEEE-B
Wednesday	:	Saturday	:	IIIEEE-B

(EE118) POWER ELECTRONICS AND SIMULATION LABORATORY

COURSE OBJECTIVES:

Students will be able to

- 1. Identify the switches with their specifications and ratings.
- 2. Select appropriate firing circuits for the converters.
- 3. Classify different commutation circuits.
- 4. Write the simulation program power electronics circuits.
- 5. Apply different converters for different applications.

COURSE OUTCOMES:

At the end of the course, students will develop ability to

- 1. Recognize the appropriate switch for the selective application.
- 2. Use different firing circuits for different converters.
- 3. Sketch voltage and current waveforms for various loads.
- 4. Demonstrate and compute the readings of the various controller circuits.
- 5. Differentiate series and parallel inverter operations.
- 6. Categorize the quadrant operations.
- 7. Simulate and estimate the converter circuits.
- 8. Justify the appropriate converter for drive applications.

LESSON PLAN

Name of the Faculty : M.M.Irfan/A.Rajamallaiah/K.Rajeshwar reddy/E.Thirupathi

	-	Academic Year: 2017-18		
Course Number	: 13EE325	Course Name : PE&S Lab		
Program	: B.Tech.	Branch : EEE		
Year/ Semester: III / II		Section : B		

S. No.	Торіс	Schedule Date	Schedule Date	
1	Study of Characteristics of SCR, MOSFET	08.12.17	16.12.17	
2	Gate firing circuits for SCR's	15.12.17	23.12.17	
3	Single Phase AC Voltage Controller with R and RL Loads	22.12.17	30.12.17	
4	Single Phase fully controlled bridge converter with R and RL loads	29.12.17	06.01.18	
5	DC Jones chopper with R and RL Loads	05.01.18	12.01.18	
6	Single Phase Series and Parallel inverter with R load	19.01.18	20.01.18	
7	Single Phase Cyclo-converter with R and RL loads	02.02.18	03.02.18	
8	Three Phase half controlled bridge converter with R-load	09.02.18	17.02.18	
9	Single Phase dual converter with RL loads	16.02.18	24.02.18	

2	017-18			III B. Tech. II Sem
	10	PSPICE simulation of single phase inverter with PWM control	23.02.18	03.03.18
	11	Revision	02.03.18	09.03.18
	12	Internal Lab Exam	16.03.18	17.03.18

Monday	:	Thursday	:	
Tuesday	:	Friday	:	III EEE-B
Wednesday	:	Saturday	••	III EEE-B